

Advances in breeding technologies: an inclusive approach

Prof Norman Maiwashe

¹ARC-Animal Production Institute, Private Bag X2, Irene, 0062 ²University of the Free State, P.O. Box 339, Bloemfontein

Wagyu Outlook Conference, Parys, South Africa, 11 August 2018

Presentation Outline

- Background
 - Beef industry outlook (2018 2024)
- Beef industry structure
- Breeding goals
- Genomics
- Concluding remarks

Beef Industry Outlook — BFAP 2015 -2024

- The demand for beef will increase resulting in increase in:
 - Beef consumption (28% increase by 2024)
 - Beef auction price (R57/kg by 2014) i.e. annual increase of 5.7%

There is a need for «more beef production» from the «same or less» resource base

Improved efficiency

Number of cows
Number of hectares

Quantity of feed

etc.

Beef Production Asset Base

Breed genetic impact on the national herd

Breed success depends on → compatibility of the **breeding goal** with the **needs** of the commercial, communal and emerging producers

Needs of commercial LARGE AND SMALL SCALE producers

- Desirable «production» cow (cow → calf)
 - Produce a «calf every year» unassisted
 - Low «feed requirements»
 - «Adapted» to the production environment i.e. management and natural environment
- Desirable product (calf → beef)
 - Well «adapted» to the production environment
 - Produce more kg of «high quality beef» at the «shortest time possible» from «low feed requirements»

→ Setting a breeding goal is important

Conventional genetic improvement

- Animal performance depends on:
 - genetics / DNA
 - environment / management
- Genetic evaluation and improvement relied on:
 - Measuring performance (performance testing)
 - Calculate genetic merit (Estimated Breeding Value EBV) using performance records (no technology was available to comprehensively read the DNA)
 - Large number of performance records were required for effective genetic improvement particularly for «lowly heritable traits»

Bovine Genome Sequencing

- Bovine genome was successfully sequenced in early 2000s
- A large number of DNA markers called SNPs were discovered throughout the genome
- SNPs allow us to discern differences among animals at DNA level

SNP chip – genome reader

New genetic improvement paradigm

- Genetic evaluation and improvement paradigm:
 - 1. Establish a reference population (>1 000 animals)
 - Animals with performance records and genotyped using SNP chip (genome reader)
 - 2. Estimate genetic merit (GEBV) using performance and genomic profile
- GEBVs are more accurate particularly for young animals with little or no performance records compared to conventional genetic evaluation
- Implication:
 - Selection can be done earlier in life → reducing selection cycle and increasing the rate of genetic improvement
 - Reduction in the cost of performance recording compared to conventional genetic improvement

Is genomic selection possible in SA?

- A National Beef Genomic Project was initiated in 2015 through a partnership between industry and government (including Namibian beef cattle breeds) aimed at:
 - Setting up reference population for different cattle breeds
 - Collecting performance records on traits of economic importance
 - Genotyping animals using SNP chip technology
 - Conducting research in order to build research capacity of genomics nationally
- To date, ~ 3000 animals were genotyped and ~40 animals were sequenced
- The first genomic evaluation in beef cattle was implemented in 2017

Is genomic selection possible in SA?

- A National Beef Genomic Project was initiated in 2015 through a partnership between industry and government (including Namibian beef cattle breeds) aimed at:
 - Setting up reference population for different cattle breeds
 - Collecting performance records on traits of economic importance
 - Genotyping animals using SNP chip technology
 - Conducting research in order to build research capacity of genomics nationally
- To date, ~ 3000 animals were genotyped and ~40 animals were sequenced
- The first genomic evaluation in beef cattle was implemented in 2017

More benefits of genomic selection

- Parentage verification
 - Genomic profiles from SNP chip could be used for both parentage verification and genomic selection
- Performance data on commercial animals could be used for genomic selection
 - Carcass data on slaughter progeny of stud bulls
- Identification of genetic defects

Genomics and Beef Industry Structure

Enhance cooperation between stud breeders and commercial producers

Summary

- New breeding technologies (genomics) provides an opportunity to enhance efficiency of production
- Development of breeding objectives is more important in genomic era since in advent mistakes might take longer to fix
- Recording of performance data is key to implementation of genomic selection

Thanks for Your Attention

Email: norman@arc.agric.za

Website: http://www.arc.agric.za

Tel: (012) 672 9028

